Part Number Hot Search : 
APTM1 DTC143X KBPC101 8731AE TIONA 5KP15 3100J K1101
Product Description
Full Text Search
 

To Download IRF7807ZTRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 6/29/06 irf7807zpbf hexfet   power mosfet notes   through  are on page 10 benefits very low r ds(on) at 4.5v v gs  ultra-low gate impedance  fully characterized avalanche voltage and current 100% tested for r g  lead-free applications control fet for notebook processor power  synchronous rectifier mosfet for graphics cards and pol converters in networking and telecommunication systems top view 8 12 3 4 5 6 7 d d d d g s a s s a so-8 absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v i d @ t a = 70c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t a = 25c power dissipation  w p d @t a = 70c power dissipation  linear derating factor w/c t j operating junction and c t stg storage temperature range thermal resistance parameter typ. max. units r jl junction-to-drain lead CCC 20 c/w r ja junction-to-ambient  CCC 50 -55 to + 150 2.5 0.02 1.6 max. 11 8.7 88 20 30  v dss r ds(on) max qg(typ. ) 30v 13.8m @v gs = 10v 7.2nc downloaded from: http:///
  2 www.irf.com static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC 0.023 CCC v/c r ds(on) static drain-to-source on-resistance CCC 11 13.8 m ? CCC 14.5 18.2 v gs(th) gate threshold voltage 1.35 1.8 2.25 v ? v gs(th) gate threshold voltage coefficient CCC - 4.7 CCC mv/c i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 gfs forward transconductance 22 CCC CCC s q g total gate charge CCC 7.2 11 q gs1 pre-vth gate-to-source charge CCC 2.1 CCC q gs2 post-vth gate-to-source charge CCC 0.7 CCC nc q gd gate-to-drain charge CCC 2.7 CCC q godr gate charge overdrive CCC 1.7 CCC see fig. 16 q sw switch charge (q gs2 + q gd ) CCC 3.4 CCC q oss output charge CCC 2.8 CCC nc r g gate resistance CCC 2.5 4.8 ? t d(on) turn-on delay time CCC 6.9 CCC t r rise time CCC 6.2 CCC t d(off) turn-off delay time CCC 10 CCC ns t f fall time CCC 3.1 CCC c iss input capacitance CCC 770 CCC c oss output capacitance CCC 190 CCC pf c rss reverse transfer capacitance CCC 100 CCC avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current  a diode characteristics parameter min. typ. max. units i s continuous source current CCC CCC 3.1 (body diode) a i sm pulsed source current CCC CCC 88 (body diode)  v sd diode forward voltage CCC CCC 1.0 v t rr reverse recovery time CCC 31 46 ns q rr reverse recovery charge CCC 17 26 nc conditions max. 63 8.8 ? = 1.0mhz conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 11a  mosfet symbol v ds = 15v, v gs = 0v v dd = 15v, v gs = 4.5v  i d = 8.8a v ds = 15v v gs = 20v v gs = -20v v ds = 24v, v gs = 0v t j = 25c, i f = 8.8a, v dd = 15v di/dt = 100a/s  t j = 25c, i s = 8.8a, v gs = 0v  showing the integral reverse p-n junction diode. v gs = 4.5v, i d = 8.8a  v gs = 4.5v typ. CCC v ds = v gs , i d = 250a clamped inductive load v ds = 15v, i d = 8.8a v ds = 24v, v gs = 0v, t j = 125c CCC i d = 8.8a v gs = 0v v ds = 15v downloaded from: http:///
  www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 20s pulse width tj = 25c 2.5v    
   
       
   0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 20s pulse width tj = 150c 2.5v    
   
       
   -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 11a v gs = 10v 2.0 3.0 4.0 5.0 6.0 v gs , gate-to-source voltage (v) 1.0 10.0 100.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 15v 20s pulse width t j = 25c t j = 150c downloaded from: http:///
  4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0481 21 6 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 8.8a 0.1 1.0 10.0 100.0 1000.0 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 0.4 0.6 0.8 1.0 1.2 1.4 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v downloaded from: http:///
  www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-ambient fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 25 50 75 100 125 150 t j , junction temperature (c) 0 2 4 6 8 10 12 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc ri (c/w) i (sec) 5.770 0.00269124.37 0.54585 19.86 7.25 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri downloaded from: http:///
  6 www.irf.com d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 13. gate charge test circuit fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 12c. maximum avalanche energy vs. drain current r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) fig 14a. switching time test circuit fig 14b. switching time waveforms v gs v ds 9 0% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + -     
   downloaded from: http:///
  www.irf.com 7 fig 15. 
 



   for n-channel hexfet   power mosfets  ?  !  ? "  ?  #$!  %& p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -       '' ? ()""*+  ? '(&,' -  ? !  ""*'./'/ ? ' -  0'(-   fig 16. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr downloaded from: http:///
  8 www.irf.com control fet 
         
      
       
   
 
  
 !"#      $  %     &'!"#     
 
$   
  

  
   
   $( p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? #

)   
          &'!"#         
     
          
  
 &'!"#     #     
            
          !*          
$             
 
             
     
    & +     
      
         
           &'!"# $   $
!,     $   

       
    - 
  .   /      

$  
$  
 synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be-tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca-pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic downloaded from: http:///
  www.irf.com 9 so-8 part marking 
                      
       
  so-8 package outlinedimensions are shown in millimeters (inches)       

  



 



 
  



 
 

 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
           

 
 

 
         
                            

       

       
     !    " ##       $%   $                   
 

   $  $       &     
 
    

 downloaded from: http:///
  10 www.irf.com 
  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 1.6mh r g = 25 ? , i as = 8.8a.  pulse width 400s; duty cycle 2%.  when mounted on 1 inch square copper board data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 06/2006 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) n otes: 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters(inches). 3 . outline conforms to eia-481 & eia-541. so-8 tape and reeldimensions are shown in milimeters (inches) downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF7807ZTRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X